Jumat, 02 September 2016

HAKIKAT PENGETAHUAN MATEMATIKA

Secara tradisional, matematika telah dipandang sebagai paradigma pengetahuan tertentu. Euclid mendirikan sebuah struktur logis yang megah hampir 2.500 tahun lalu dalam Elements, yang sampai akhir abad kesembilan belas diambil sebagai paradigma untuk mendirikan kebenaran dan kepastian. Newton menggunakan bentuk Elemen di dalam bukunya Principia, dan Spinoza dalam Etika, untuk memperkuat klaim mereka atas penjelasan kebenaran sistematis. Dengan demikian matematika telah lama diambil sebagai sumber pengetahuan yang paling tertentu yang dikenal bagi umat manusia.
Sebelum menyelidiki sifat pengetahuan matematika, pertama-tama perlu untuk mempertimbangkan sifat pengetahuan pada umumnya. Jadi kita mulai dengan bertanya, apakah pengetahuan? Pertanyaan tentang apa yang merupakan pengetahuan inti dari filsafat, dan pengetahuan matematika memainkan suatu peranan penting. Jawaban filsafat standar untuk pertanyaan ini adalah bahwa pengetahuan adalah keyakinan yang dibenarkan. Lebih tepatnya, bahwa pengetahuan awalnya terdiri dari dalil yang dapat diterima (yaitu, percaya), asalkan ada alasan yang memadai untuk menegaskannya. (Sheffler, 1965; Chisholm, 1966; Woozley, 1949).
Pengetahuan diklasifikasikan atas dasar alasan untuk pernyataan tersebut. Pengetahuan apriori terdiri dari dalil yang ditegaskan berdasarkan pemikiran  sendiri, tanpa jalan lain untuk pengamatan dunia. Berikut alasan penggunaan logika deduktif dan makna istilah, biasanya dapat ditemukan dalam definisi. Sebaliknya, empiris atau pengetahuan posteriori terdiri dari dalil menegaskan berdasarkan pengalaman, yaitu, berdasarkan pengamatan dunia (Woozley, 1949).
Pengetahuan matematika diklasifikasikan sebagai pengetahuan prioritas, karena terdiri dari dalil menegaskan berdasarkan nalar semata. Termasuk alasan logika deduktif dan definisi yang digunakan, dalam hubungannya dengan seperangkat asumsi aksioma atau postulat matematika, sebagai dasar untuk menyimpulkan pengetahuan matematika. Jadi dasar pengetahuan matematika, yang merupakan alasan untuk menyatakan kebenaran dalil matematika, terdiri dari buktI deduktif.
Bukti dari dalil matematika adalah rentetan yang terbatas dari pernyataan akhir pada dalil, yang memenuhi sifat berikut. Setiap pernyataan merupakan aksioma diambil dari seperangkat aksioma sebelumnya, atau diturunkan dengan aturan kesimpulan dari satu atau lebih pernyataan yang terjadi sebelumnya dalam urutan. Istilah ‘sekumpulan aksioma’ dipahami secara luas, untuk memasukkan apa pun pernyataan diterima menjadi bukti tanpa demonstrasi, termasuk aksioma, dalil-dalil dan definisi.
Diberikan sebuah contoh membuktikan pernyataan berikut ‘1 + 1 = 2 ‘dalam sistem aksiomatik aritmatika Peano. Untuk bukti ini kita membutuhkan definisi dan aksioma s0 = 1, s1 = 2, x + 0 = x, x + sy = s (x + y) dari Aritmatika Peano, dan aturan inferensi logis dari P (r), r = t ⇒ P (t); P (v) ⇒ P (c) (di mana r, t, v, c, dan P (t) kisaran lebih dari istilah; variabel, konstanta, dan dalil dalam istilah t, masing-masing, dan ‘ ‘⇒ menandakan implikasi logis) .2 Berikut ini adalah bukti 1 + 1 = 2: x + sy = s (x + y), 1 + sy = s (1 + y), 1 + s0 = s (1 + 0), x +0 = x, 1 +0 = 1, 1 + s0 = s1, s0 = 1, 1 +1 = s1, s1 = 2, 1 +1 = 2.
Penjelasan tentang bukti ini adalah sebagai berikut. s0 = 1 [D1] dan s1 = 2 [D2] adalah definisi dari konstanta 1, dan 2 masing-masing, dalam Aritmatika Peano, x +0 = x [A1] dan x + sy = s (x + y) [A2] adalah aksioma Aritmatika Peano. P (r), r = t ⇒ P (t) [R1] dan P (v) ⇒ P (c) [R2], dengan simbol-simbol seperti dijelaskan di atas, aturan logis dari inferensi. Pembenaran bukti, pernyataan demi pernyataan seperti yang ditunjukkan pada Tabel 1.1.
Tabel 1.1: Bukti 1 +1 = 2 dengan pembenaran
LangkahKalimatPembenaran dari kalimat
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
x + sy = s ( x + y )
1 +  sy = s ( 1 + y)
1 + s0  = s ( 1 + 0)
x + 0  = s
1 + 0   = 1
1 + s0  = 1
s0 = 1
1 + 1 = s1
s1 = 2
1 + 1 = 2
A2
R2 diterapkan pada S1, menggunakan v = x, c = 1
R2 diterapkan pada S2, menggunakan v = y, c = 0
A1
R2 diterapkan pada S4, menggunakan v = x, c = 1
R1 diterapkan S3 dan S5, menggunakan r = 1 + 0, t =1
D1
R1 diterapkan S6 dan S7, menggunakan r = s0, t = 1
D2
R1 diterapkan S8 dan S9, menggunakan r = s1, t = 2
Bukti ini memperlihatkan ‘1 + 1 = 2 ‘sebagai pokok pengetahuan matematika atau kebenaran, menurut analisis sebelumnya, karena bukti deduktif menetapkan jaminan logis untuk menegaskan pernyataan itu. Selanjutnya adalah pengetahuan priori, karena ditegaskan berdasarkan nalar semata.
Namun, apa yang belum jelas adalah dasar  asumsi yang dibuat dalam pembuktian. Asumsi yang dibuat terdiri dari dua jenis: asumsi matematika dan asumsi logis. Asumsi matematika yang digunakan adalah definisi (D1 dan D2) dan aksioma (A1 dan A2). Asumsi logis adalah aturan kesimpulan yang digunakan (R1 dan R2), yang merupakan bagian yang mendasari bukti dari teori, dan kalimat yang mendasari bahasa formal.
Kami menganggap pertama asumsi matematika. Definisi, menjadi definisi yang eksplisit, yang bukan merupakan persoalan, karena pada prinsipnya mereka dapat disingkirkan. Setiap pemunculan dari istilah yang didefinisikan 1 dan 2 dapat digantikan oleh apa yang disingkat (s0 dan ss0, masing-masing). Hasil menghilangkan definisi ini adalah bukti disingkat: x + sy = s (x + y), s0 + sy = s (S0 + y), s0 + s0 = s (s0 +0), x +0 = x, s0 +0 = s0, s0 + s0 = ss0; membuktikan ‘s0 + s0 = ss0’, yang mewakili ‘1 +1 = 2 ‘. Meskipun definisi eksplisit disingkat pada prinsipnya, itu tetap merupakan kenyamanan yang tak diragukan, belum lagi bantuan untuk berpikir, untuk mempertahankan mereka. Namun, dalam konteks ini kita prihatin untuk mengurangi asumsi-asumsi yang minimum mereka, untuk mengungkapkan asumsi yang tak dapat dikurangi pengetahuan matematika dan pembenaran.
Jika definisi tidak eksplisit, seperti dalam definisi asli dari induktif Peano (Heijenoort, 1967), yang diasumsikan di atas sebagai sebuah aksioma, dan bukan sebagai definisi, maka definisi tidak akan eliminable pada prinsipnya. Dalam hal ini masalah dasar definisi, yaitu asumsi yang menjadi landasannya, analog dengan aksioma.
Aksioma tidak terlepas pada pembuktian. Mereka harus dianggap baik sebagai kebenaran aksiomatik, atau hanya mempertahankan pembenarannya, asumsi sementara, diadopsi untuk memungkinkan perkembangan dari teori matematika yang sedang dipertimbangkan. Kami akan kembali ke hal ini.
Asumsi logis, yaitu aturan inferensi (bagian dari bukti teori keseluruhan) dan sintaks logis, diasumsikan sebagai bagian dari logika yang mendasarinya, dan merupakan bagian dari mekanisme yang dibutuhkan untuk aplikasi alasan. Jadi logika diasumsikan sebagai landasan bermasalah untuk pembenaran pengetahuan.
Singkatnya, kebenaran matematika SD ‘1 +1 = 2 ‘, tergantung untuk pembenaran pada bukti matematika. Hal ini pada gilirannya tergantung pada asumsi sejumlah pernyataan matematika dasar (aksioma), serta pada logika yang mendasarinya. Secara umum, pengetahuan matematika terdiri dari pernyataan dibenarkan oleh bukti-bukti, yang tergantung pada aksioma matematika (dan logika yang mendasari).
Akun ini pengetahuan matematika pada dasarnya adalah yang telah diterima selama hampir 2.500 tahun. Presentasi awal pengetahuan matematika, Elemen Euclid, berbeda dari data di atas hanya dengan derajat. Dalam Euclid, pengetahuan matematika didirikan oleh deduksi logis dari aksioma dan postulat theoremsfrom (yang kita termasuk di antara aksioma). Logika yang mendasari dibiarkan tidak ditentukan (selain pernyataan dari beberapa aksioma mengenai hubungan kesetaraan). Aksioma-aksioma tidak dianggap sebagai asumsi sementara diadopsi, diadakan hanya untuk pembangunan teori di bawah pertimbangan. Aksioma dianggap kebenaran dasar yang diperlukan tidak ada pembenaran, bukti luar diri mereka sendiri (Blanche, 1966) . 3 Karena itu, account klaim untuk menyediakan dasar untuk pengetahuan matematika tertentu. Sebab bukti logis mempertahankan kebenaran dan diasumsikan aksioma yang jelas kebenaran, maka setiap teorema yang berasal dari mereka harus juga kebenaran (penalaran ini implisit, tidak eksplisit di Euclid). Namun, klaim ini tidak lagi diterima karena aksioma Euclid dan postulat tidak dianggap kebenaran dasar dan tak terbantahkan, tidak ada yang dapat dinegasikan atau ditolak tanpa mengakibatkan kontradiksi. Bahkan, penolakan beberapa dari mereka, yang paling notablythe Postulat Paralel, hanya mengarah ke badan lain pengetahuan geometris (non-Euclidean geometri).
Selain Euclid, pengetahuan matematika modern mencakup banyak cabang yang bergantung pada asumsi set aksioma yang tidak dapat diklaim sebagai kebenaran universal dasar, misalnya, aksioma teori grup, atau teori himpunan (Maddy, 1984)

Tidak ada komentar:

Posting Komentar